Sequence and Series - Class XI

Related Questions with Solutions

Questions

Quetion: 01

If $\sqrt[x]{a} = \sqrt[y]{b} = \sqrt[z]{c}$ and if a, b, c are in G.P., then A. x, y, z are in A.P. B. x, y, z are in G.P. C. x + z = 2y D. $y^2 = xz$

Solutions

Solution: 01

Q a, b, c are in G.P. $\therefore \log a, \log b, \log c, \text{ are in A.P.}$ $\Rightarrow 2 \log b = \log a + \log c \dots[i]$ Given $\sqrt[x]{a} = \sqrt[y]{b} = \sqrt[z]{c}$ $\Rightarrow a^{1/x} = b^{1/y} = c^{1/z}$ $\Rightarrow \frac{1}{x} \log a = \frac{1}{y} \log b = \frac{1}{z} \log c = k(\text{ let })$ $\therefore \log a = kx, \log b = ky, \log c = kz \dots[ii]$ From [i] and [ii] we get $2ky = kx + kz, k \neq 0$ $\Rightarrow 2y = x + z$ Hence x, y, z are in A.P.

Correct Options

Answer:01

Correct Options: A, C